(x)=-1.2x^2+62.5x-491

Simple and best practice solution for (x)=-1.2x^2+62.5x-491 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x)=-1.2x^2+62.5x-491 equation:


Simplifying
(x) = -1.2x2 + 62.5x + -491
x = -1.2x2 + 62.5x + -491

Reorder the terms:
x = -491 + 62.5x + -1.2x2

Solving
x = -491 + 62.5x + -1.2x2

Solving for variable 'x'.

Reorder the terms:
491 + x + -62.5x + 1.2x2 = -491 + 62.5x + -1.2x2 + 491 + -62.5x + 1.2x2

Combine like terms: x + -62.5x = -61.5x
491 + -61.5x + 1.2x2 = -491 + 62.5x + -1.2x2 + 491 + -62.5x + 1.2x2

Reorder the terms:
491 + -61.5x + 1.2x2 = -491 + 491 + 62.5x + -62.5x + -1.2x2 + 1.2x2

Combine like terms: -491 + 491 = 0
491 + -61.5x + 1.2x2 = 0 + 62.5x + -62.5x + -1.2x2 + 1.2x2
491 + -61.5x + 1.2x2 = 62.5x + -62.5x + -1.2x2 + 1.2x2

Combine like terms: 62.5x + -62.5x = 0.0
491 + -61.5x + 1.2x2 = 0.0 + -1.2x2 + 1.2x2
491 + -61.5x + 1.2x2 = -1.2x2 + 1.2x2

Combine like terms: -1.2x2 + 1.2x2 = 0.0
491 + -61.5x + 1.2x2 = 0.0

Begin completing the square.  Divide all terms by
1.2 the coefficient of the squared term: 

Divide each side by '1.2'.
409.1666667 + -51.25x + x2 = 0

Move the constant term to the right:

Add '-409.1666667' to each side of the equation.
409.1666667 + -51.25x + -409.1666667 + x2 = 0 + -409.1666667

Reorder the terms:
409.1666667 + -409.1666667 + -51.25x + x2 = 0 + -409.1666667

Combine like terms: 409.1666667 + -409.1666667 = 0.0000000
0.0000000 + -51.25x + x2 = 0 + -409.1666667
-51.25x + x2 = 0 + -409.1666667

Combine like terms: 0 + -409.1666667 = -409.1666667
-51.25x + x2 = -409.1666667

The x term is -51.25x.  Take half its coefficient (-25.625).
Square it (656.640625) and add it to both sides.

Add '656.640625' to each side of the equation.
-51.25x + 656.640625 + x2 = -409.1666667 + 656.640625

Reorder the terms:
656.640625 + -51.25x + x2 = -409.1666667 + 656.640625

Combine like terms: -409.1666667 + 656.640625 = 247.4739583
656.640625 + -51.25x + x2 = 247.4739583

Factor a perfect square on the left side:
(x + -25.625)(x + -25.625) = 247.4739583

Calculate the square root of the right side: 15.731305041

Break this problem into two subproblems by setting 
(x + -25.625) equal to 15.731305041 and -15.731305041.

Subproblem 1

x + -25.625 = 15.731305041 Simplifying x + -25.625 = 15.731305041 Reorder the terms: -25.625 + x = 15.731305041 Solving -25.625 + x = 15.731305041 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '25.625' to each side of the equation. -25.625 + 25.625 + x = 15.731305041 + 25.625 Combine like terms: -25.625 + 25.625 = 0.000 0.000 + x = 15.731305041 + 25.625 x = 15.731305041 + 25.625 Combine like terms: 15.731305041 + 25.625 = 41.356305041 x = 41.356305041 Simplifying x = 41.356305041

Subproblem 2

x + -25.625 = -15.731305041 Simplifying x + -25.625 = -15.731305041 Reorder the terms: -25.625 + x = -15.731305041 Solving -25.625 + x = -15.731305041 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '25.625' to each side of the equation. -25.625 + 25.625 + x = -15.731305041 + 25.625 Combine like terms: -25.625 + 25.625 = 0.000 0.000 + x = -15.731305041 + 25.625 x = -15.731305041 + 25.625 Combine like terms: -15.731305041 + 25.625 = 9.893694959 x = 9.893694959 Simplifying x = 9.893694959

Solution

The solution to the problem is based on the solutions from the subproblems. x = {41.356305041, 9.893694959}

See similar equations:

| f(x)=-1.2x^2+62.5x-491 | | 4y+3y+2y= | | z-20y-.425=0 | | 2+8q=90 | | (3v-5)(7-v)=0 | | 4q-11=9 | | 0=14x+x^2+49 | | 0=a(a+6) | | (2x^3-9x^2+6x+3)-(3x^2-7x+7)= | | 17(5)=x | | (X^2+3x+9)+(8x-8)= | | 4b(3b-4)(4b-1)=0 | | 2x^3+3x^2-4=0 | | 3x-78=8x+52 | | 3(3x+5)=3x+5 | | 4(2x-7)=6x+4 | | -3(8x-10)=6x-9 | | (y+5)(7-y)=0 | | z^3+5z^2x-9zx^2+5x^3= | | n=100+1 | | valueforx=4 | | x+6+x=3 | | 5x+1+7=14 | | (x)(x)+69(x)-23456789=0 | | (x)(x)+69(x)+23456789=0 | | (x)(x)+69(x)=0 | | M=Nt+NrSOLVEt | | 1b-5z=9 | | a+y^3=7 | | q+t=2 | | 200+2.5x=562.5 | | 3s^4+12=y^5 |

Equations solver categories